1. A set of guidelines called a model code of conduct is enforced during Parliamentary elections in India to avert corrupt practices. This is applied to ________.
 (1) Political parties only
 (2) Political parties and voters
 (3) Political parties and candidates
 (4) Candidates contesting elections only
 Ans (3)

2. A country has the ultimate rights and power to make decisions on internal and external matters. Also it is not dictated by any external power on its decisions relating to its relation with other country. Which feature is reflected in these statements?
 (1) Republic
 (2) Socialism
 (3) Sovereignty
 (4) Authoritarian
 Ans (3)

3. Anti-defection law is an important feature of Indian party system. The final authority to decide on the disqualification of a member of the Parliament with respect to anti-defection lies with the _____.
 (1) President
 (2) Prime Minister
 (3) Chief Justice the Supreme Court of India
 (4) Speaker of the Lok Sabha or the Chairman of the Rajya Sabha
 Ans (4)

4. Which of the following statements exemplify the independence of judiciary in India?
 I. Judiciary is not under the control of executive and legislature.
 II. There is less scope for interference in the working of judiciary by the political executive.
 III. A judge of higher judiciary can be removed only through a resolution which requires 2/3rd majority of both the houses of parliament.
 Choose the correct option.
 (1) I and II
 (2) I and III
 (3) I, II and III
 (4) II and III
 Ans (3)

5. Rajya Sabha is also called the upper house, elders house and permanent house. Which of the statement/s given below is/are true about it?
 I. Rajya Sabha has more power related to financial matters,
 II. Rajya Sabha members continue to be in office till the next general election.
 III. Resolution for removing the Vice President and the President originates in Rajya Sabha.
 IV. Number of seats allotted to a state in the Rajya Sabha is directly proportionate to its population.
 (1) I, II and III
 (2) III and IV
 (3) I and IV
 (4) IV only
 Ans (4)
6. In the context of Indian elections, the parties which fail to gain majority in the Parliament play the role of opposition. Consider the following statements and choose which statement/s is/are is NOT true.
 I. Opposition parties in India play an important role in building public opinion.
 II. Opposition parties are not constitutionally recognized.
 III. Opposition immediately assumes power of government, if the majority party loses its vote of confidence in the Parliament.
 IV. Opposition parties keep a close check on the activities of the government.
 (1) I and II only (2) II and III only (3) III only (4) I, III and IV
 Ans (2)

7. Consider the following statements:
 Statement I: All countries that are democratic have written constitution.
 Statement II: All countries that have written constitution are not necessarily democratic.
 Which of the above statement/s is/are correct?
 (1) I only (2) II only (3) both I and II (4) Neither I nor II
 Ans (2)

8. China exports a toy to India at Rs. 150, whereas the same toy is manufactured and available in India for Rs. 250. When China continues to export this toy to India, this trade practice is known as ______.
 (1) dumping (2) export promotion (3) import substitution (4) export subsidization
 Ans (3)

9. Shruti and Gautami were discussing about India’s GDP and Keralas SDP. Some of the observations made were
 I. Kerala’s per capita SDP is India’s GDP divided by Kerala’s population in a particular year
 II. Since Kerala has best literacy rate and excellent quality of life indices, it must have the highest SDP.
 III. In a federal structure if we know all the SDPs we can have a fair idea of how big India’s GDP will be in that year.
 IV. Keralas per capita SDP in a particular year is the value of all final goods and services produced by the Kerala state in that year divided by Kerala’s population in that year.
 Which of the above statements are correct?
 (1) I and III (2) II and III (3) III and IV (4) I, III and IV
 Ans (3)

10. Shehnaaz joined a coaching institute for a professional course. At the time of joining the course, she paid a lump sum fee for the entire course of two years. However, she did not find the quality of teaching satisfactory and decided to quit after one year. When she asked for a refund of the fee for one year, she was refused. Which of the following right/s of Shehnaaz was/were violated?
 I. Right to choose II. Right to represent
 III. Right to be informed IV. Right to seek redressal
 (1) Only I (2) I and IV (3) III and IV (4) only IV
 Ans (4)
11. Which of the following reflects a situation where a person is employed but do not contribute in adding to the total product?
I. Open unemployment
II. Disguised unemployment
III. Seasonal unemployment
IV. Frictional unemployment
(1) I and II (2) Only II (3) III and IV (4) Only IV
Ans (2)

12. There are 100 households in the village of Awangkhul, of which the loan taken by 20 households are from the State Bank Of India, another 20 households from their friends and relatives, 5 households from Indian Bank, 10 households from a Regional Rural Bank, 15 households from businessmen, 10 households from village headmen and 20 households from cooperative societies. Which of the following inference(s) is/are correct?
I. Formal sources of credit are lower than the others.
II. Institutional sources of credit are higher than others.
III. Non-institutional sources of credit are higher than others.
IV. Informal sources of credit are slightly higher than others.
(1) only I (2) I and II (3) Only II (4) III and IV
Ans (3)

13. Which of the following statements are true about food security?
I. Landless people always have food insecurity.
II. Those who do not have enough nutritious food are food insecure.
III. Those who have enough food but not the requisite nutrition are food secure.
IV. Those who do not have enough purchasing power to buy sufficient food are food insecure.
(1) I and III (2) I and IV (3) I and III (4) II and IV
Ans (2)

14. Siddhik issues a cheque of Rs. 19,000 in favour of Hanush. What happens when the cheque is received and processed in Hanush’s bank?
I. There is no change in their bank accounts
II. Both their bank balances increase by Rs.19,000.
III. Siddhik’s bank balance decreases by Rs.19,000 and Hanush’s bank balance increases by the same amount.
IV. There is no change in Siddhik’s bank balance although Hanush’s bank balance sees an increase.
Based on the above statements which option is correct?
(1) Only I (2) I and III (3) Only III (4) III and IV
Ans (3)
15. The daily wage of a person in rural area is Rs.180. Arrange the following households in descending order of vulnerability to poverty.

<table>
<thead>
<tr>
<th>Name of the Household</th>
<th>Person-days of employment</th>
<th>Size of the Household</th>
<th>Working members of the family</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruldo</td>
<td>14</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Mulkha</td>
<td>15</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Fakira</td>
<td>10</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Preeto</td>
<td>12</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

(1) Preeto > Mulkha > Fakira > Ruldoo (2) Mulkha > Preeto > Ruldoo > Fakira
(3) Mulkha > Ruldoo > Preeto > Fakira (4) Ruldoo > Fakira > Mulkha > Preeto
Ans (2)

16. The following graph shows the distribution of mean monthly temperature and average rainfall of a particular city during the year.

Which one of the following cities shows the climatic conditions presented in the above graph?
(1) Nagpur (2) Chennai (3) Jodhpur (4) Bengaluru
Ans (1)

17. The average mean monthly temperatures of four stations are given in the following table. The temperature is influenced by the, movements of land and sea breezes.

<table>
<thead>
<tr>
<th>Stations</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>14.4</td>
<td>16.7</td>
<td>29.3</td>
<td>30.0</td>
<td>33.3</td>
<td>33.3</td>
<td>30.0</td>
<td>29.4</td>
<td>28.9</td>
<td>25.6</td>
<td>19.4</td>
<td>15.6</td>
</tr>
<tr>
<td>B</td>
<td>16.8</td>
<td>19.2</td>
<td>26.6</td>
<td>29.8</td>
<td>33.3</td>
<td>33.9</td>
<td>31.3</td>
<td>29.0</td>
<td>20.1</td>
<td>27.0</td>
<td>20.1</td>
<td>14.9</td>
</tr>
<tr>
<td>C</td>
<td>24.5</td>
<td>25.7</td>
<td>27.7</td>
<td>30.4</td>
<td>33.0</td>
<td>32.5</td>
<td>31.0</td>
<td>30.2</td>
<td>29.8</td>
<td>28.0</td>
<td>25.9</td>
<td>24.7</td>
</tr>
<tr>
<td>D</td>
<td>21.5</td>
<td>23.9</td>
<td>28.3</td>
<td>32.7</td>
<td>35.5</td>
<td>32.0</td>
<td>27.7</td>
<td>27.3</td>
<td>27.9</td>
<td>26.7</td>
<td>23.1</td>
<td>20.7</td>
</tr>
</tbody>
</table>

Which one of these stations experiences maximum moderating influence of the land and sea breezes?
(1) A (2) B (3) C (4) D
Ans (3)
18. Observe the data given in the following table.

<table>
<thead>
<tr>
<th>City</th>
<th>Female Literacy Rate (%)</th>
<th>Male Literacy Rate (%)</th>
<th>Sex-Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>66.77</td>
<td>85.38</td>
<td>960</td>
</tr>
<tr>
<td>B</td>
<td>71.16</td>
<td>82.67</td>
<td>980</td>
</tr>
<tr>
<td>C</td>
<td>73.78</td>
<td>77.17</td>
<td>989</td>
</tr>
<tr>
<td>D</td>
<td>59.26</td>
<td>79.24</td>
<td>972</td>
</tr>
</tbody>
</table>

Based on the above table, identify the city which has the extent of equality between male and female better than the rest in terms of the given parameters?

(1) A (2) B (3) C (4) D

Ans (3)

Identify the proper sequence of vegetation type she has observed from the following.

(1) Alpine to Temperate to Subtropical (2) Subtropical to Temperate to Alpine
(3) Subtropical to Alpine to Temperate (4) Temperate to Alpine to Subtropical

Ans (1), (2)

20. Observe the map given below.

Identify the shaded regions with their corresponding geographical features and select the correct option using the codes given below.

(1) A = Zone of laterite soil, B = Coffee producing area, C = Cotton textile industries, D = Evergreen forest cover
(2) A = Evergreen forest cover, B = Coffee producing area, C = Zone of laterite soil, D = Cotton textile industries
(3) A = Evergreen forest cover, B = Zone of laterite soil, C = Coffee producing area, D = Cotton textile industries
(4) A = Cotton textile industries, B = Coffee producing area, C = one of laterite soil, D = Evergreen forest cover.

Ans (2)
21. Which of the following geological sequence properly matches the tectonic events from old to recent time periods?

(1) Formation of Aravalli - Deccan volcanism - formation of Shiwalik - upliftment of Himadri
(2) Deccan volcanism - Formation of Aravalli - Upliftment of Himadri - formation of Shiwalik.
(3) Deccan volcanism - Formation of Shiwalik - Upliftment of Himadri - formation of Aravalli
(4) Formation of Aravalli - Deccan volcanism - upliftment of Himadri - formation of Shiwalik.

Ans (2)

22. The given map shows location of different mountain peaks in India.

A mountaineer wants to scale the mountain peaks in Peninsular India starting from North to South. Identify the correct sequence of peaks the mountaineer will follow?

(1) A = Mahendragiri, B = Anaimudi, C = Dodabetta, D = Mahabaleshwar.
(2) A = Dodabetta, B = Mahabaleshwar, C = Mahendragiri, D = Anaimudi.
(3) A = Anaimudi, B = Mahendragiri, C = Dodabetta, D = Mahabaleshwar.
(4) A = Mahendragiri, B = Mahabaleshwar, C = Dodabetta, D = Anaimudi.

Ans (4)

23. While teaching a topic on agriculture, geography teacher had made the following statement about a particular crop in her class. “Mean Monthly Temperature of about 27°C, high relative humidity, rainfall of 150 cm in summer months and khaddar soils are the ideal physical requirements during the period of its vegetative growth.”

Which one of the following crops was stated by the teacher?

(1) Tea (2) Jute (3) Rubber (4) Sugarcane

Ans (2), (4)

24. Bibhuti was travelling to study the traditional agricultural practices among various communities in Meghalaya, Jharkhand, Odisha and Western Ghats. Identify the correct sequence of forms of cultivation practised in these regions.

(1) Jhumming - Kumari - Pama Dabi – Kuruwa (2) Kuruva - Pama Dabi - Jhumming - Kumari.
(3) Jhumming - Kuruwa - Pama Dabi – Kumari (4) Pama Dabi - Kumari - Jhumming - Kuruwa

Ans (3)
25. River Indus flows through Leh and Kargil districts in the state of Jammu and Kashmir. It has four major tributaries in India. Which one of the following is the correct sequence of the tributaries arranged from East to West in terms of their confluence with river Indus?

(1) Zaskar - Dras - Hunza - Shyok (2) Zaskar - Hunza - Dras - Shyok
(3) Hunza - Dras - Zaskar - Shyok (4) Zaskar - Dras - Shyok - Hunza

Ans (3)

26. A tourist was travelling Indian States and came across a famous Buddhist Monastery, farming of three rice crops within the same agricultural year, a cement factory and floating gardens on a lake. Identify the proper sequence of the States the tourist travelled.

(1) Sikkim - West Bengal - Assam - Meghalaya
(2) Sikkim - Arunachal Pradesh - Assam - Manipur
(3) Arunachal Pradesh - Assam - Meghalaya - Manipur
(4) Arunachal Pradesh - West Bengal - Manipur - Meghalaya

Ans (3)

27. Observe the following diagrams carefully.

Which one of the above population pyramids is an ideal representation of India’s population?

(1) I (2) II (3) III (4) IV

Ans (3)

28. Which of the following statements regarding printing in Medieval Europe are correct?

I. Wood block printing reached Europe in the 13th Century.
II. The aristocrats and monks criticized printed books as cheap vulgarities in the beginning.
III. Printing did not entirely displace the art of producing books by hand.
IV. Martin Luther had reservations against printing of books.

(1) I, II and III (2) I, III and IV (3) I, II and IV (4) II, III and IV

Ans (1)

29. Which of the following statements related to Mahatma Gandhi’s view on Satyagraha are correct?

I. The movement in South Africa was not passive resistance.
II. It is the weapon of the people, who are not weak.
III. India could not militarily face Britain.
IV. Truth is the supreme dharma.

(1) I, II and III (2) I, II and IV (3) II, III and IV (4) I, III and IV

Ans (2)
30. Which of the following statements relating to the ‘Scorched Earth Policy’ in Java are correct?
 I. The Dutch destroyed the saw mills.
 II. Teak logs were burnt by the Dutch.
 III. Trees were cut freely to meet war needs.
 IV. The villagers were encouraged to expand cultivation in the forest areas.
 (1) I and II (2) I, II and III (3) I and IV (4) II, III and IV
 Ans (2)

31. Which of the following statements about opium cultivation in India during the British period are correct?
 I. The peasants could sell off the produce freely.
 II. Local traders offered higher prices for opium.
 III. Opium production was increasing in territories that were not under the British.
 IV. Peasants were getting money advances from the village headman to produce opium.
 (1) I, II and III (2) I, II and IV (3) I, III and IV (4) II, III and IV
 Ans (2), (4)

What does the picture represent?
 (1) Mourning (2) Slave auction (3) Market place (4) Roadside gathering
 Ans (2)

33. Why were Nghe An and Ha Tinh provinces called ‘electrical fuses’ of Vietnam?
 (1) They were near to the capital city and were centers of power.
 (2) They were among the poorest provinces and had an old radical tradition.
 (3) They were very rich and had strong trade links with the outer world.
 (4) They were at the borders and were in conflicts with the neighbouring countries.
 Ans (2)

34. Which of the following would be the part of the surroundings in a chawl in Bombay during the colonial period?
 I. Large number of people living in shared rooms.
 II. A large population of people belonging to depressed and lower classes.
 III. Streets and neighbourhood being used for a variety of activities such as cooking, washing and sleeping.
 IV. Liquor shops and Akharas in any open spot.
 (1) I, II and III (2) I, III and IV (3) II and II (4) II, III and IV
35. Which of the following statements are true in the context of Cricket in Victorian England?
 I. The rules of Cricket were made to favour those who were described as “Players”.
 II. The wages of professionals were paid by patronage or subscription or gate money.
 III. Cricket was viewed as a way of teaching English boys discipline, importance of hierarchy and leadership qualities.
 IV. The rich who played were called amateurs.
 (1) I, II and III (2) I, II and IV (3) I, III and IV (4) II, III and IV
 Ans (3)

36. Which of the following statements are true for eighteenth century France?
 I. There was much criticism of slavery.
 II. The National Assembly feared opposition from businessmen who were dependant on slave trade.
 III. Plantation owners understood their freedom as including the right to enslave Africans.
 IV. The Convention of 1791 legislated to free all slaves in the French overseas possessions.
 (1) I and II (2) I, II and IV (3) II and III (4) II, III and IV
 Ans (4)

37. Which of the following statements are true in the context of Liberals in Modern Europe?
 I. They opposed the uncontrolled power of dynastic rulers.
 II. They wanted to safeguard the rights of individuals against governments.
 III. They argued for Independent judiciary.
 IV. They believed in universal adult franchise for all men and women with property.
 (1) I, II and III (2) I, II and IV (3) I, III and IV (4) II, III and IV
 Ans (1)

Directions: (Questions 38 - 40)

Read the statements and select the correct answer from the options given below.

1. Statement I is true, Statement II is false.
2. Statement I is false, Statement II is true.
3. Both statements are true, and Statement II provides explanation to Statement I.
4. Both Statements are true but Statement II does not provides explanation to Statement I.

38. Statement I: The Bretton Woods System came up during the post -World War Period.
 Statement II: The industrial nations had massive growth of trade and incomes.
 Ans (4)

39. Statement I: Potatoes had been discovered by the Europeans in the Americas.
 Statement II: Poor people in Ireland were dependent on potatoes to escape starvation in the 19th century.
 Ans (4)
40. **Statement I:** The President of India cannot claim the kind of direct mandate that the Prime Minister of India can.

Statement II: A candidate contesting for the post of President has to gain a majority of votes to be elected as the President of India.

Ans (4)

41. If $m = n^2 - n$, where n is an integer, then $m^2 - 2m$ is divisible by

(1) 20
(2) 24
(3) 30
(4) 16

Ans (2)

$m^2 - 2m$

$= m (m - 2)$

$= (n^2 - n) (n^2 - n - 2)$

$= n (n - 1) (n^2 - n - 2)$

$= n(n - 1) [n (n - 2) + 1 (n - 2)]$

$= n (n - 1) (n - 2) (n + 1)$

\Rightarrow 4 consecutive integers, divisible by 24

42. The value of $\sqrt{97 \times 98 \times 99 \times 100 + 1}$ is equal to

(1) 9901
(2) 9891
(3) 9801
(4) 9701

Ans (4)

$\sqrt{97 \times 98 \times 99 \times 100 + 1}$

$= \sqrt{9700 \times 9702 + 1}$

$= \sqrt{(9701 - 1)(9701 + 1) + 1}$

$= \sqrt{(9701)^2 - 1 + 1}$

$= 9701$

43. Let $P(x)$ be a polynomial of degree 3 and $P(n) = \frac{1}{n}$ for $n = 1, 2, 3, 4$. Then the value of $P(5)$ is

(1) 0
(2) $\frac{1}{5}$
(3) $\frac{2}{5}$
(4) $\frac{3}{5}$

Ans (1)

General form of cubic polynomial is $P(x) = ax^3 + bx^2 + cx + d$

$P(1) = a + b + c + d = 1$
... (1)

$P(2) = 8 a + 4 b + 2c + d = \frac{1}{2}$
... (2)

$P(3) = 27a + 9b + 3c + d = \frac{1}{3}$
... (3)

$P(4) = 64 a + 16 b + 4 c + d = \frac{1}{4}$
... (4)

To find $125 a + 25 b + 5 c + d$

(2) – (1) gives $7 a + 3 b + c = -\frac{1}{2}$
... (5)

(3) – (2) gives $19 a + 5 b + c = -\frac{1}{6}$
... (6)

(4) – (3) gives $37 a + 7 b + c = -\frac{1}{12}$
... (7)
(6) – (5) gives \(12a + 2b = \frac{1}{3}\) \(\quad \ldots (8)\)

(7) – (6) gives \(18a + 2b = \frac{1}{12}\) \(\quad \ldots (9)\)

Solving (8) and (9)
\[a = -\frac{1}{24}, \quad b = \frac{5}{12}\]

Using 'a' and 'b' in (5)
\[c = \frac{35}{24}\]

Using a, b, c in (1), \(d = \frac{25}{12}\)

\[P(5) = 125a + 25b + 5c + d\]
\[= 125\left(-\frac{1}{24}\right) + 25\left(\frac{5}{12}\right) + 5\left(\frac{-35}{24}\right) + \frac{25}{12} = 0\]

44. If \(\alpha\) and \(\beta\) are the roots of the equation \(3x^2 - 5x + 3 = 0\), then the quadratic equation whose roots are \(\alpha^2\beta\) and \(\alpha\beta^2\) is
(1) \(3x^2 - 5x + 3 = 0\) \(\quad (2) 3x^2 - 8x + 5 = 0\) \(\quad (3) 3x^2 - 8x + 3 = 0\) \(\quad (4) 3x^2 - 5x - 3 = 0\)

\textbf{Ans (1)}

Given
\[\alpha + \beta = \frac{5}{3}, \quad \alpha\beta = 1\]

\[\Rightarrow x^2 - [\alpha\beta + \alpha\beta^2] x + \alpha^2\beta^3 = 0\]
\[= x^2 - [\alpha\beta (\alpha + \beta)] x + (\alpha\beta)^3 = 0\]
\[= x^2 - \frac{5}{3} x + 1 = 0\]

The required equation is \(3x^2 - 5x + 3 = 0\)

45. In village Madhubani 8 women and 12 girls can paint a large mural in 10 hours. 6 women and 8 girls can paint it in 14 hours. The number of hours taken by 7 women and 14 girls to paint the mural is
(1) 10 \(\quad (2) 15\) \(\quad (3) 20\) \(\quad (4) 35\)

\textbf{Ans (1)}

Let one woman complete the work is \(x\) hours.
Let one girl complete the work is \(y\) hours
\[\Rightarrow \frac{8}{x} + \frac{12}{y} = \frac{1}{10}\] \(\quad \ldots (1)\)

\[\frac{6}{x} + \frac{8}{y} = \frac{1}{14}\] \(\quad \ldots (2)\)

\[\frac{24}{x} + \frac{36}{y} = \frac{3}{10}\]
\[\frac{24}{x} + \frac{32}{y} = \frac{4}{14}\]
\[\frac{4}{y} = \frac{3}{10} + \frac{4}{14}\]
\[\frac{4}{y} = \frac{21 - 20}{70} \]
\[\Rightarrow y = 280 \text{ hours} \]
\[\frac{8}{x} + \frac{12}{280} = \frac{1}{10} \]
\[\Rightarrow x = 140 \text{ hours} \]
\[\frac{8}{x} = \frac{16}{280} \Rightarrow x = 140 \text{ hours} \]
\[\frac{7}{140} + \frac{14}{280} = \frac{1}{10} \Rightarrow 10 \text{ hours} \]

46. If \(x = \frac{3 + \sqrt{5}}{2} \) and \(y = x^3 \), then \(y \) satisfies the quadratic equation

\[(1) \ y^2 - 18y + 1 = 0 \]
\[(2) \ y^2 + 18y + 1 = 0 \]
\[(3) \ y^2 - 18y - 1 = 0 \]
\[(4) \ y^2 + 18y - 1 = 0 \]

Ans (1)
\[x = \frac{3 + \sqrt{5}}{2} \]
\[\Rightarrow 2x - 3 = \sqrt{5} \]
\[\Rightarrow (2x - 3)^2 = (\sqrt{5})^2 \]
\[\Rightarrow 4x^2 - 12x + 9 = 5 \]
\[\Rightarrow 4x^2 - 12x + 4 = 0 \]
\[\Rightarrow x^2 - 3x + 1 = 0 \]
\[\Rightarrow x^2 = 3x - 1 \]

Cubing (1) on both sides
\[x^6 = (3x)^3 - (1)^3 - 3(3x)(3x - 1) \]
\[y^2 = 27y - 1 - 9x(x^2) \]
\[\Rightarrow y^2 = 27y - 1 - 9y \]
\[\Rightarrow y^2 - 18y + 1 = 0 \]

47. If \(\tan^2 \theta = 1 - e^2 \), then the value of \(\sec \theta + \tan^3 \theta \cdot \cosec \theta \) is equal to

\[(1) \ (1 - e^2)^{\frac{1}{2}} \]
\[(2) \ (2 - e^2)^{\frac{1}{2}} \]
\[(3) \ (2 - e^2)^{\frac{3}{2}} \]
\[(4) \ (2 - e^2)^{\frac{3}{2}} \]

Ans (3)
\[\tan^2 \theta = 1 - e^2 \]
\[\Rightarrow \tan^2 \theta + 1 = 2 - e^2 \]
\[\Rightarrow \sec^2 \theta = (2 - e^2) \]
\[\sec \theta + \tan^3 \theta \cdot \cosec \theta \]
\[= \sec \theta + \tan^2 \theta \cdot \frac{\sin \theta}{\cos \theta} \cdot \frac{1}{\sin \theta} \]
\[= \sec \theta + \tan^2 \theta \cdot \sec \theta \]
\[= \sec \theta (1 + \tan^2 \theta) \]
\[= (2 - e^2)^{\frac{1}{2}}(2 - e^2) \]
\[= (2 - e^2)^{\frac{3}{2}} \]
48. Let the volume of a solid sphere be $288 \pi \text{ cm}^3$. A horizontal plane cuts the sphere at a distance of 3 cm from the centre so that the ratio of the curved surface areas of the two parts of the sphere is 3 : 1. The total surface area of the bigger part of the sphere (in cm2) is

(1) 36π
(2) 108π
(3) 135π
(4) 144π

Ans (3)

Volume of a sphere
$$V = \frac{4}{3} \pi r^3 = 288 \pi \text{ cm}^3$$

$$r^3 = \frac{288 \times 3}{4}$$

$$r^3 = 216 \Rightarrow r = 6 \text{ cm}$$

$$AO^2 = 6^2 - 3^2$$

$$AO = 36 - 9$$

$$AO^2 = 27 \text{ cm}$$

Again, let the curved surface areas be m and $3m$ [ratio = 1 : 3]

$$m + 3m = 4\pi r^2$$

$$4m = 4 \times \pi \times 36$$

$$m = 36 \pi$$

TSA of the bigger part = $3m + \pi \times (OA)^2$

$$= 3 \times 36\pi + \pi \times 27$$

$$= \pi \times (108 + 27)$$

$$= 135 \pi$$

49. A solid metallic cylinder of height 10 cm and diameter 14 cm is melted to make two cones in the proportion of their volumes as 3 : 4, keeping the height 10 cm, what would be the percentage increase in the flat surface area?

(1) 9
(2) 16
(3) 50
(4) 200

Ans (3)

Given: Height of cylinder = 10 cm

Diameter of cylinder = 14 cm

$$\Rightarrow \text{Volume} = \pi \times 7^2 \times 10$$

$$= \frac{22}{7} \times 7 \times 7 \times 10$$

$$= 1540 \text{ cm}^3$$

Given, $\frac{\text{Volume of cone}_1}{\text{Volume of cone}_2} = \frac{3}{4}$

$$\frac{\frac{1}{3} \pi r_1^2 \times 10}{\frac{1}{3} \pi r_2^2 \times 10} = \frac{3}{4} \Rightarrow \frac{r_1^2}{r_2^2} = \frac{3}{4}$$

$$\frac{1}{3} \pi r_1^2 \times 10 = \frac{3}{7} \times 1540$$

$$\frac{1}{3} \times \frac{22}{7} \times r_1^2 \times 10 = \frac{3}{7} \times 1540$$
\[r_1^2 = \frac{3 \times 1540 \times 3}{22 \times 10} \]
\[r_1^2 = 9 \times 7 = 63 \]
\[r_2^2 = 84 \]

Flat surface of cylinder = \(2\pi r^2 = 2 \times \frac{22}{7} \times 7 \times 7 \)

Flat surface of the two cones = \(\frac{22}{7} \times 63 + \frac{22}{7} \times 84 \)

\[\Rightarrow \% \text{ Increase in area} = \frac{\frac{22}{7} (63 + 84) - \frac{22}{7} (49 \times 2)}{2 \times \frac{22}{7} \times 7 \times 7} \times 100 \]

\[= \frac{63 + 84 - 98}{98} \times 100 \]

\[= \frac{49}{98} \times 100 = 50\% \]

50. Each vertical face of square based vertical pillar of height 3 m has 7 equal, semi-cylindrical surfaces in such a way that its horizontal cross-section is as shown in the figure.

If the radius of each semi-circle is 10 cm, the volume (in m\(^3\)) of the pillar so designed (taking \(\pi = \frac{22}{7} \)) is

(1) 5.88 \hspace{1cm} (2) 6.14 \hspace{1cm} (3) 6.42 \hspace{1cm} (4) 7.2

\textbf{Ans (4)}

Area of cross section \times height = Volume
= Area of square + area of 28 semicircles
= (20 \times 7)\(^2\) + area of 14 circles.
= 19600 + 14 \times \frac{22}{7} \times 10 \times 10
= 19600 + 4400 = 24000 \text{ cm}^3
= 2.4 \text{ m}^2

\Rightarrow \text{Volume of the pillar.}
= 2.4 \times 3
= 7.2 \text{ m}^3
51. Let ABCD be a square of side 20 cm. The area of the square PQRS (in cm²) interior to ABCD, shown in the figure is

\[\text{Area of PQRS} = \left(\frac{20}{5}\right)^2 = 80 \text{ cm}^2 \]

Ans (2)

Constructions: Draw BF \parallel QR, extend RO.
Similarly Draw GC, ED, and AH parallel to SR, PS and PQ respectively.

In \(\triangle BFO \) and \(\triangle CRO \).
\[BO = OC \]
\[B\hat{F}O = C\hat{R}O = 90^\circ \]
\[B\hat{O}F = C\hat{R}O = \angle BFO = \angle CRO \] \[\Rightarrow \triangle BFO \equiv \triangle CRO \] \[\text{Similarly} \quad \triangle CGN \equiv \triangle DSN \]
\[\triangle DEM \equiv \triangle APM \]
and \(\triangle AHG \equiv \triangle BQL \)

From (1), (2), (3) and (4),

\[\text{Area of PQRS} = \left(\frac{20}{5}\right)^2 = 80 \text{ cm}^2 \]

52. A circle is inscribed in a right angled triangle of perimeter \(7\pi \). Then the ratio of numerical values of circumference of the circle to the area of the right angled triangle is

\((1) \ 4 : 7 \quad (2) \ 3 : 7 \quad (3) \ 2 : 7 \quad (4) \ 1 : 7 \)

Ans (1)

\[\frac{1}{2} \times AB \times r + \frac{1}{2} \times AC \times r + \frac{1}{2} \times BC \times r = \frac{1}{2} \times AB \times BC \]
\[\frac{1}{2} \times r (AB + AC + BC) = \frac{1}{2} \times AB \times BC \]
\[\Rightarrow \text{radius} = \frac{\text{Area}}{\text{semi perimeter}} \]
\[\frac{2\pi}{\text{Area}} = \frac{2\pi}{\frac{7\pi}{2}} \]
\[\therefore \text{Ratio} = 4 : 7 \]
53. It is known that area of a cyclic quadrilateral is \(\sqrt{(s-a)(s-b)(s-c)(s-d)} \) where \(a, b, c, d \) are the sides and \(s = \frac{a+b+c+d}{2} \). If a circle can also be inscribed in the cyclic quadrilateral then the area of this quadrilateral is

(1) \(\sqrt{(ab)^2 + (cd)^2} \)
(2) \(\sqrt{abcd} \)
(3) \(\sqrt{(ac)^2 + (ad)^2} \)
(4) \(\sqrt{(ad)^2 + (bc)^2} \)

Ans (2)

We know that \(a + c = b + d \)

\[
\sqrt{(s-a)(s-b)(s-c)(s-d)} = \frac{\sqrt{(b+c+d-a)(a+c+d-b)(a+b+d-c)(a+b+c-d)}}{4} = \frac{\sqrt{2c \cdot 2d \cdot 2a \cdot 2b}}{4} = \sqrt{abcd}
\]

54. Two circles, both of radii \(a \) touch each other and each of them touches internally a circle of radius \(2a \).

Then the radius of the circle which touches all the three circles is

(1) \(\frac{1}{2}a \)
(2) \(\frac{2}{3}a \)
(3) \(\frac{3}{4}a \)
(4) \(a \)

Ans (2)

In \(\Delta PBO \), \(PB^2 + BO^2 = PO^2 \)

\[
(2a - r)^2 + a^2 = (r + a)^2
\]

\[
4a^2 + r^2 - 4ar + a^2 = r^2 + a^2 + 2ar
\]

\[
4a^2 = 6ar
\]

\[
r = \frac{4a^2}{6a} = \frac{2a}{3}
\]

55. Let \(D \) be a point on the side \(BC \) of a triangle \(ABC \) such that \(\angle ADC = \angle BAC \). If \(AC = 21 \text{ cm} \), then the side of an equilateral triangle whose area is equal to the area of the rectangle with sides \(BC \) and \(DC \) is

(1) \(14 \times \frac{1}{2} \)
(2) \(42 \times \frac{1}{2} \)
(3) \(14 \times 3^2 \)
(4) \(42 \times 3^2 \)

Ans (3)

\(\Delta ACB \sim \Delta DCA \)

\[
\frac{AC}{BC} = \frac{DC}{AC}
\]

\[
AC^2 = DC \times BC
\]

\[
DC \times BC = 441
\]

\[
\frac{\sqrt{3}}{4} a^2 = 441
\]

\[
a^2 = \frac{441 \times 4}{\sqrt{3}}
\]
56. Let ABC be a triangle with sides a, b, c. Then lengths of medians of the triangle formed by the medians of the triangle ABC are

\[
\begin{align*}
(1) & \quad \frac{1}{2} a, \frac{1}{2} b, \frac{1}{2} c \\
(2) & \quad \frac{2}{3} a, \frac{2}{3} b, \frac{2}{3} c \\
(3) & \quad \frac{3}{4} a, \frac{3}{4} b, \frac{3}{4} c \\
(4) & \quad \frac{5}{6} a, \frac{5}{6} b, \frac{5}{6} c
\end{align*}
\]

Ans (3)

Given that AF, BE and DC are medians

\[
c^2 + b^2 = 2 \left(AF^2 + \left(\frac{1}{2} a \right)^2 \right)
\]

\[
c^2 + b^2 = 2AF^2 + \frac{a^2}{2} \quad \text{... (1)}
\]

\[
\frac{2c^2 + 2b^2 - a^2}{4} = AF^2 \quad \text{similarly} \quad BE^2 = \frac{2c^2 + 2a^2 - b^2}{4} \quad \text{... (2)}
\]

and

\[
CD^2 = \frac{2b^2 + 2a^2 - c^2}{4} \quad \text{... (3)}
\]

If sides are formed by AF, BE and CD,

\[
\text{Median}^2 = \frac{2(AF)^2 + 2(CD) - (BE)^2}{4} = \frac{9b^2}{16}
\]

\[
\Rightarrow \text{Median} = \frac{3}{4} b
\]

Similarly the other two medians are \(\frac{3}{4} a \) and \(\frac{3}{4} c \)

57. \((x+1)^4\) is divided by \((x-1)^3\). Then the value of the remainder at \(x = 1\) is

(1) −16 (2) 0 (3) 16 (4) 32

Ans (3)

Remainder when \((x+1)^4\) is divided by \((x-1)^3\) is \([1+1]^4 = 16\)

58. A circle passes through the vertices of a triangle ABC. If the vertices are A (−2, 5), B (−2, −3), C (2, −3), then the centre of the circles

(1) (0, 0) (2) (0, 1) (3) (−2, 1) (4) (0, −3)

Ans (2)

A(−2, 5), B(−2, −3), C(2, −3)

\[
\begin{align*}
AB &= \sqrt{0^2 + 8^2} \\
BC &= \sqrt{4^2 + 0} \\
AC &= \sqrt{4^2 + 8^2}
\end{align*}
\]

\[
\Rightarrow AB^2 + BC^2 = AC^2
\]

\[
\Rightarrow \text{ABC is a right angled triangle.}
\]

\[
\Rightarrow \text{Circumcentre is the mid-point of hypotenuse}
\]
\[
\begin{pmatrix}
-2 + 2 \\
5 - 3
\end{pmatrix}
\]
\[
= \begin{pmatrix}
0 \\
2
\end{pmatrix}
\]

59. If two dice are thrown together, the probability that the difference of the numbers appearing on them is a prime number

\begin{align*}
(1) & \quad \frac{2}{9} \\
(2) & \quad \frac{4}{9} \\
(3) & \quad \frac{5}{12} \\
(4) & \quad \frac{17}{36}
\end{align*}

Ans (2)

Favorable events = (6, 1), (6, 3), (6, 4)

\[
= 3 \times 2 = 6
\]

(5, 2), (5, 3) = 2 \times 2 = 4

(4, 1), (4, 2) = 1 \times 2 = 2

\[
\Rightarrow P(E) = \frac{n(E)}{n(S)} = \frac{16}{35}
\]

\[
P(E) = \frac{4}{9}
\]

60. Observe the given data.

<table>
<thead>
<tr>
<th>Class</th>
<th>Frequency</th>
<th>f₁</th>
<th>f₂</th>
<th>f₁x₁</th>
<th>f₂x₂</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 20</td>
<td>17</td>
<td></td>
<td></td>
<td>170</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 – 40</td>
<td>f₁</td>
<td>30</td>
<td></td>
<td>30f₁</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 – 60</td>
<td>32</td>
<td>50</td>
<td></td>
<td>1600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 – 80</td>
<td>f₂</td>
<td>70</td>
<td></td>
<td>70f₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80 – 100</td>
<td>19</td>
<td>90</td>
<td></td>
<td>1710</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\sum f_i = \sum f_i x_i = 3480 + 30f_1 + 70f_2
\]

\[
17 + f_1 + 32 + f_2 + 19 = 120 \\
3480 + 30f_1 + 19f_2 = 50
\]

\[
\frac{120}{120} = f_1 + f_2 = 52 \\
30f_1 + 70f_2 = 2520
\]

\[
\Rightarrow 3f_1 + 3f_2 = 156 \\
3f_1 + 7f_2 = 252
\]

\[
\begin{align*}
4f_2 &= 96 \\
f_2 &= 24
\end{align*}
\]

\[
\Rightarrow f_1 = 28
\]
Directions (Questions 61 - 62): Suppose that the acceleration versus time graph of a particle that starts from rest at \(t = 0 \) is as shown in the figure.

61. At what instant does the particle come to rest for the first time?
 (1) 5 s
 (2) 10 s
 (3) 15 s
 (4) The particle never comes to rest
 Ans (3)
 \[v = 0 + 5 \times 10 \]
 \[v = 50 \text{ ms}^{-1} \]
 \[v = 50 - 10 \times 5 \]
 \[= 50 - 50 \]
 \[v = 0 \text{ ms}^{-1} \]

62. What is the total distance travelled by the particle during 30 s?
 (1) 0 m
 (2) 500 m
 (3) 750 m
 (4) 1000 m
 Ans (3)
 For \((0 \text{ s} - 10 \text{ s}) \)
 \[S_1 = \frac{1}{2} \times 5 \times 10^2 = 250 \text{ m} \]
 For \((10 \text{ s} - 15 \text{ s}) \)
 \[S_2 = ut + \frac{1}{2}at^2 \]
 \[= 50 \times 5 - \frac{1}{2} \times 10 \times 5^2 \]
 \[= 250 - 125 = 125 \text{ m} \]
 For \((15 \text{ s} - 20 \text{ s}) \)
 \[S_3 = 0 - \frac{1}{2}at^2 = \frac{1}{2} \times 1 \times 5^2 = -125 \text{m} \]
 For \((20 \text{ s} - 30 \text{ s}) \)
 \[S_4 = ut + \frac{1}{2}at^2 \]
 \[= -50 \times 10 + \frac{1}{2} \times 5 \times 10^2 \]
 \[= -250 \text{m} \]
 Total distance = \(s_1 + s_2 + s_3 + s_4 \)
 \[= 250 + 125 + 125 + 250 \]
 \[= 750 \text{ m} \]
 However, total displacement = 0.
63. An object of mass 2 kg is moving under the action of a force which varies with time as shown in the figure.

![Graph of F vs t](image)

Which one of the following ‘statements is correct for the interval from 0 to 20 s?

1. The momentum of the object decreases by 75 kg m/s.
2. The momentum of the object increases by 75 kg m/s.
3. The momentum of the object increases by 125 kg m/s.
4. The change in momentum cannot be found as initial speed is unknown.

Ans (2)

Area under F-t graph

\[
\text{F}.\text{t} = \text{change in momentum}
\]

\[
\text{Change in momentum} = \frac{1}{2} \times 5 \times 10 + \frac{1}{2} \times 5 \times 10 + \frac{1}{2} \times 5 \times (-10)
\]

\[
= 25 + 50 + 25 - 25
\]

Change in momentum = 75 kg m\(s^{-1}\)

Since initial momentum is zero, increase in the momentum of the object is equal to 75 kg m\(s^{-1}\).

64. Two cars ‘A’ and ‘B’ of same mass start from the same location at the same time but on different straight roads. Car ‘A’ travels on a road that has greater angle of inclination with horizontal compared to the road on which ‘B’ travels.

At any instant both cars ‘A’ and ‘B’ have the same height above the starting point. If \(E_A\) and \(E_B\) are total energies of cars ‘A’ and ‘B’ respectively, then

1. \(E_A < E_B\)
2. \(E_A = E_B\)
3. \(E_A > E_B\)
4. Relation between \(E_A\) and \(E_B\) cannot be decided based on given information.

Ans (1)

Since at any instant both cars A and B have the same height above the starting point, both the cars have same potential energy at any instant.

But kinetic energy of car B should be greater than car A at any instant, because for both cars to have same vertical displacement car B has to travel longer distance.

:. Total energy of car B is greater than that of car A.

65. The gravitational potential energy difference per unit mass between the surface of a planet and a point 100 m above it is 1000 J/kg. How much work is required to be done in moving a 5 kg object 100 m on a slope at 300 to the horizontal on this planet?

1. 1250 J
2. 2500 J
3. 4350 J
4. 5000 J
Ans (2)
\[
\sin 30^\circ = \frac{1}{2} = \frac{x}{100 \text{ m}}
\]
\[
\Rightarrow x = 50 \text{ m}
\]
PE = mgh = (5) (10) (50)
PE = 2500 J

Directions: (Questions 66 - 67) Two identical objects A and B each of mass m start moving along the same vertical line in opposite directions at the same instant. Object A is dropped from rest from a height H above the ground and object B is projected vertically upward from the ground with speed \(u = \sqrt{2gH} \).

66. At what height above the ground do they collide?

(1) \(\frac{1}{4}H \)
(2) \(\frac{1}{2}H \)
(3) \(\frac{2}{3}H \)
(4) \(\frac{3}{4}H \)

Ans (4)
\[
u_A = 0, \quad u_B = \sqrt{2gH}
\]
\[
s_A = \frac{1}{2}gt^2 = x
\]
\[
s_B = \sqrt{2gH} t - \frac{1}{2}gt^2 = H - x
\]
\[
H - x = \sqrt{2gH} t - x
\]
\[
H = t\sqrt{2gH}
\]
\[
t = \frac{H}{\sqrt{2gH}}
\]
\[
x = \frac{1}{2}g \frac{H^2}{2gH}
\]
\[
x = \frac{H}{4}
\]

Height above the ground at which they collide is \(\frac{3H}{4} \).

67. After they collide, they stick to each other. What is the loss in their total energy?

(1) 0
(2) \(\frac{1}{2}mgH \)
(3) \(\frac{3}{2}mgH \)
(4) \(2mgH \)

Ans (2)
\[
u_A = 0, u_B = \sqrt{2gH}
\]
At \(h = \frac{3H}{4} \):
\[
v_A^2 = u_A^2 + \frac{2gH}{4} = \frac{gH}{2}
\]
\[
v_A = \sqrt{\frac{gH}{2}}
\]
\[
v_B^2 = 2gH - kg \left(\frac{3H}{4} \right) = 2gH - \frac{3gH}{2}
\]
\[v_B = \sqrt{\frac{gH}{2}} \]

w.k.t,
\[mv_A + mv_B = 2mv \]
\[v_A = -v_B \]
\[v = 0 \] (v is the velocity after collision)
\[\Rightarrow \frac{3H}{4} \] the energy is purely potential.

At \(\frac{3H}{4} \) the total energy is:
\[T.E = 2mgH \]
\[\Rightarrow \Delta T.E = 2mgH - \frac{3mgH}{2} = \frac{mgH}{2} \]

68. Given below are two different graphs of variation of density (or pressure) of the medium with position (Fig. 1) and with time (Fig. 2) as a wave passes through the medium.

What will be the speed of the wave in the given medium?

(1) 25 m/s \hspace{1cm} (2) 50 m/s \hspace{1cm} (3) 250 m/s \hspace{1cm} (4) 500 m/s

\textbf{Ans} (4)

From density – position graph, \(\lambda = 100 \text{ cm} \)

From density – time graph, \(t = 2 \text{ m} \)

\[v = \frac{\lambda}{T} \]

\[v = \frac{100 \times 10^{-2}}{2 \times 10^{-3}} = 500 \text{ m s}^{-1} \]
69. A convex lens and a concave lens, each of focal length 10 cm, are kept separated by a distance of 2 cm as shown in the figure. If the light is incident from left, the combination of lenses will be______.

(1) converging
(2) diverging
(3) behaving like a glass slab
(4) converging or diverging depending on whether the lenses are arranged as shown in the figure or in the reverse order.

Ans (1)
\[
\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 f_2}
\]
\[
f_1 = +10 \text{ cm, } f_2 = -10 \text{ cm, } d = 2 \text{ cm}
\]
\[
\frac{1}{f} = \frac{1}{10 \text{ cm}} - \frac{1}{10 \text{ cm}} - \frac{2 \text{ cm}}{(+10 \text{ cm})(-10 \text{ cm})}
\]
\[
\frac{1}{f} = \frac{2 \text{ cm}}{100 \text{ cm}^2}
\]
\[
f = +50 \text{ cm}
\]
Since effective focal length is positive, the system behaves as a converging lens.

70. In the circuit given, the ratio of work done by the battery to maintain the current between point A and B to the work done for the whole circuit is

(1) \(\frac{1}{117} \) \hspace{1cm} (2) \(\frac{1}{13} \) \hspace{1cm} (3) \(\frac{1}{12} \) \hspace{1cm} (4) 1

Ans (2)

\[
R_{\text{eff}} = 2\Omega + \frac{1}{3}\Omega + 2\Omega = \frac{13}{3}\Omega
\]
\[I = \frac{V}{R} = \frac{1.3}{\frac{13}{3}} = \frac{3.9}{13} = \frac{3}{10} \text{ A} \]

\[V_{AB} = \frac{3}{10} \times \frac{1}{3} = \frac{1}{10} \text{ V} \]

\[\frac{V_{AB}}{V} = \frac{1}{\frac{10}{13}} = \frac{1}{10} \]

71. Magnetic field at the centre of a circular coil of radius \(R \) carrying current \(i \) is \(B \propto \frac{i}{R} \) and its direction is given by right-hand thumb rule. Magnetic field at the centre of a circular arc subtending an angle \(\theta \) (in degree) is \(B \propto \frac{i}{R} \left(\frac{\theta}{360^\circ} \right) \) and its direction can be found using right hand rule.

Consider two circular coils made of uniform conductors as shown in figure 3 and 4. In figure 3 points C and D are diametrically opposite to each other, and in figure 4 \(\angle PO_2 Q = 12^\circ \). Then magnetic fields

(1) at both \(O_1 \) and \(O_2 \) are zero
(2) at both \(O_1 \) and \(O_2 \) are non-zero
(3) is zero at \(O_1 \) but non-zero at \(O_2 \)
(4) is non-zero at \(O_1 \) but zero at \(O_2 \)

Ans (1)

Here \(i_1 = i_2 = i \)

\[|\vec{B}_1| = |\vec{B}_2| \text{ [since they arise due to same magnitude of current (i)], which is equidistant from the center } O_1. \]

But \(\vec{B}_2 \) is directed into the plane of the paper at \(O_1 \) and \(\vec{B}_1 \) is directed out of the plane of the paper at \(O_1 \)

\[\vec{B}_{net} = 0 \text{ (at } O_1) \]
Here, \(i_3 \neq i_4 \)

\[\therefore R_3 > R_4 \Rightarrow I_3 < I_4 \]

From the data it is clear that

\[R_4 = \frac{R}{3} \quad \text{and} \quad R_3 = \frac{2R}{3} \]

\[\Rightarrow i_4 = 2 i_3 \]

\[\begin{vmatrix} B_3 \\ B_4 \end{vmatrix} = i_3 \left(\frac{240^\circ}{360^\circ} \right) \]

\[\begin{vmatrix} B_3 \\ B_4 \end{vmatrix} = 2 i_3 \left(\frac{120^\circ}{360^\circ} \right) \]

\[\frac{|B_3|}{|B_4|} = 1 \Rightarrow |B_3| = |B_4| \]

According to the right hand rule, \(\overrightarrow{B_3} \) is directed into the plane of paper and \(\overrightarrow{B_4} \) is directed out.

\[\Rightarrow \overrightarrow{B_{\text{net}}} = O \quad \text{at} \quad O_2 \]

72. A pin AB of length 2 cm is kept on the axis of a convex lens between 18 cm and 20 cm as shown in figure. Focal length of convex lens is 10 cm. Find magnification produced for the image of the pin.

(1) 0.83

Ans (3)

\[u = -18 \text{ cm}, \quad f = +10 \text{ cm} \]

\[\frac{1}{f} = \frac{1}{v} - \frac{1}{u} \]

\[\frac{1}{10 \text{ cm}} = \frac{1}{v} - \frac{1}{18 \text{ cm}} \]

\[v = \frac{180 \text{ cm}}{8} = 22.5 \text{ cm} \]

\[OB' - OA' = 22.5 \text{ cm} - 20 \text{ cm} \]

\[OB' - OA' = 2.5 \text{ cm} \]

\[m = \frac{OB' - OA'}{AB} = \frac{A'B'}{AB} = \frac{2.5 \text{ cm}}{2 \text{ cm}} = 1.25 \]

\[m = 1.25 \]
73. What is the current supplied by the battery in the circuit shown below? Each resistance used in circuit is of 1 kΩ and potential difference $V_{AB} = 8$ V.

![Circuit Diagram](image)

(1) 64 mA (2) 15 mA (3) 9.87 mA (4) 1 mA

Ans (2)

R_1, R_2, R_3, R_4, R_5 are in parallel

$R_{1-5} = \frac{R}{5}$

R_6, R_7, R_8 are in parallel

$R_{6-8} = \frac{R}{3}$

$R_{eff} = R_{1-5} + R_{6-8}$

$= \frac{R}{5} + \frac{R}{3}$

$R_{eff} = \frac{8R}{15}$

$V_{AB} = 8$ V

$V = IR$

$I = \frac{8}{\frac{8R}{15}}$

$I = \frac{15}{R}$

$I = 15$ mA

74. Read the following statements.

Statement I: Sodium metal reacts violently with water to produce heat and fire.

Statement II: Potassium metal reacts violently with water to form potassium hydroxide and hydrogen gas. Select the correct answer from the options given below.

(1) Statement I is true, Statement II is false.
(2) Statement I is false, Statement II is true.
(3) Both statements are true, and Statement II provides explanation to Statement I.
(4) Both Statements are true but Statement II does not provides explanation to Statement I.

Ans (3)

Statement 1 is true, sodium metal reacts vigorously with water forming sodium hydroxide and hydrogen gas (exothermic). Hydrogen gas forms an explosive mixture with air and burns.

Statement 2 is true, potassium reacts with water forming potassium hydroxide and hydrogen gas.

As both Na and K are highly reactive metals, belong to same group (Group I).

As they have similar reactivity, statement 2 is the correct explanation for statement 1.
75. You are provided with 18 g each of O_2, N_2, CH_4 and H_2O. Which of the following is the correct decreasing order of number of atoms present in these samples?

(1) CH_4 > H_2O > N_2 > O_2
(2) O_2 > N_2 > H_2O > CH_4
(3) CH_4 > N_2 > O_2 > H_2O
(4) N_2 > H_2O > O_2 > CH_4

Ans (1)

<table>
<thead>
<tr>
<th></th>
<th>18</th>
<th>28</th>
<th>16</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular mass</td>
<td>32</td>
<td>28</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>Given mass</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>No. of moles</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>No. of atoms</td>
<td>(\frac{18}{32}N_A\times2)</td>
<td>(\frac{18}{28}N_A\times2)</td>
<td>(\frac{18}{16}N_A\times5)</td>
<td>(\frac{18}{18}N_A\times3)</td>
</tr>
<tr>
<td></td>
<td>1.12 N_A</td>
<td>1.28 N_A</td>
<td>5.62 N_A</td>
<td>3N_A</td>
</tr>
</tbody>
</table>

The decreasing order of number of atoms is CH_4 > H_2O > N_2 > O_2.

76. Manya, Kartik, Gurnoor and Sheena had arranged the ions F^–, Na^+, O^{2–}, and Mg^{2+} in decreasing orders of their ionic radii.

Manya – O^{2–} > Mg^{2+} > F^– > Na^+
Kartik – Mg^{2+} > Na^+ > O^{2–} > F^–
Gurnoor – O^{2–} > F^– > Na^+ > Mg^{2+}
Sheena – F^– > Na^+ > O^{2–} > Mg^{2+}

Who had provided the correct order of their decreasing ionic radii?

(1) Manya
(2) Kartik
(3) Gurnoor
(4) Sheena

Ans (3)

The given species are isoelectronic with ten electrons.

\(8\)O^{2–} - 2, 8
\(9\)F^– - 2, 8
\(11\)Na^+ - 2, 8
\(12\)Mg^{2+} - 2, 8

Size of anion are larger than its neutral atom and size of cations are smaller than its neutral atom.

Based on effective nuclear charges, the decreasing order of ionic radii are

O^{2–} > F^– > Na^+ > Mg^{2+}

77. An organic compound A on heating with concentrated H_2SO_4 gave product B and on warming with alkaline KMnO_4 gave compound C. Compound A on heating with compound C in presence of concentrated H_2SO_4 formed compound D, which has fruity smell.

Identify the compounds A, B, C and D:

(1) A = Alcohol, B = Carboxylic acid, C = Alkene, D = Ester
(2) A = Carboxylic acid, B = Ester, C = Alkene, D = Alcohol
(3) A = Alcohol, B = Alkene, C = Carboxylic acid, D = Ester
(4) A = Alkene, B = Alcohol, C = Ester, D = Carboxylic acid

Ans (3)

A + H_2SO_4 → B
B + alk.KMnO₄ → C
A + C \xrightarrow{\text{heating conc.} \, \text{H₂SO₄}} \text{D}

As ‘D’ is a fruity smelling compound, it is an ester, which can be formed by reaction between an acid and alcohol. alk.KMnO₄ is a strong oxidising agent which converts ‘B’ into acid ‘C’. Thus ‘A’ should be an alcohol. Alcohol (A) on dehydration using conc. H₂SO₄ yields alkene ‘B’.

A – alcohol, B – alkene, C – acid, D – ester

78. Match List I (Mixture) and List II (Type) with the list III (Example) and select the correct answer from the combinations given below:

<table>
<thead>
<tr>
<th>List I (Mixture)</th>
<th>List II (Type)</th>
<th>List III (Example)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Liquid in gas</td>
<td>1. Emulsion</td>
<td>I. Mist</td>
</tr>
<tr>
<td>B. Liquid in liquid</td>
<td>2. Aerosol</td>
<td>II. Sponge</td>
</tr>
<tr>
<td>C. Gas in solid</td>
<td>3. Foam</td>
<td>III. Face cream</td>
</tr>
<tr>
<td></td>
<td>4. Gel</td>
<td>IV. Butter</td>
</tr>
</tbody>
</table>

(1) A – 3 – II, B – 1 – III, C – 4 – IV
(2) A – 2 – I, B – 1 – III, C – 3 – II
(4) A – 1 – II, B – 4 – I, C – 2 – III

Ans (2)

79. Which of the following set of reactions will NOT occur?

I. MgSO₄(aq) + Fe(s) → FeSO₄(aq) + Mg(s)
II. CuSO₄(aq) + Fe(s) → FeSO₄(aq) + Cu(s)
III. MgSO₄(aq) + Cu(s) → CuSO₄(aq) + Mg(s)
IV. CuSO₄(aq) + Zn(s) → ZnSO₄(aq) + Cu (s)

(1) I and III
(2) II and IV
(3) I, II and III
(4) II, III and IV

Ans (1)

Decreasing order of reactivity of given metals is Mg > Zn > Fe > Cu
Hence, Fe cannot displace Mg from MgSO₄ and Cu also cannot displace Mg from MgSO₄

80. Two organic compounds ‘A’ and ‘B’ react with sodium metal and both produce the same gas ‘X,’ but with sodium hydrogen carbonate only compound B reacts to give a gas ‘Y’. Identify ‘A’, ‘B’, ‘X’ and ‘Y’:

(1) A = Ethylene, B = Ethyl Alcohol, X = Carbon dioxide, Y = Hydrogen
(2) A = Ethyl alcohol, B = Acetic acid, X = Hydrogen, Y = Carbon dioxide
(3) A = Methyl alcohol, B = Ethyl alcohol, X = Hydrogen, Y = Carbon dioxide
(4) A = Acetic acid, B = Formic acid, X = Carbon dioxide, Y = Hydrogen

Ans (2)

A + Na → (X) gas
B + Na → (X) gas
B reacts with NaHCO₃ → Y gas
Hence Y is CO₂ and X is H₂ gas

As A does not react with NaHCO₃, it should be alcohol and B is carboxylic acid.
81. Consider the elements A, B, C and D with atomic numbers 11, 12, 16 and 17, respectively. Which among the following statements regarding these elements are correct?

I. The element C will gain electron more easily than element D.
II. The element B tends to lose electron more readily than C.
III. The oxide of A will be least basic while that of D will be most basic.
IV. The energy required to remove an electron from outermost shell from A will be minimum while that from D will be maximum.

(1) I and III only (2) I and IV only (3) II and III only (4) II and IV only

Ans (4)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
<td>12</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>2, 8, 1</td>
<td>2, 8, 2</td>
<td>2, 8, 6</td>
<td>2, 8, 7</td>
</tr>
</tbody>
</table>

II. The element B tends to lose electron more readily than C and

IV. The energy required to remove an electron from outermost shell from A will be minimum while that from D will be maximum are correct statements.

82. The following observations are given for four

I. Metal H does not react with dilute HCl.
II. Metal K reacts with warm water.
III. Metal L does not react with water but displaces metal H from its aqueous salt solution.
V. Metal M reacts with cold water.

Choose the correct decreasing order of reactivity of these metals amongst the following:

(1) M > L > H > K (2) K > M > H > L (3) M > K > L > H (4) L > H > K > M

Ans (3)

H + HCl → No reaction
K + H₂O (warm) → Products
L + H₂O → No reaction
L + HX → LX + H
M + cold water → Products

As M reacts with cold water, it is highly reactive, followed by K, L, H.

L is more reactive than H and H is least reactive.

The correct decreasing order of reactivity is M > K > L > H

83. Match chemical reactions given in the List I with the type of chemical reactions given in List II and select the correct answer using the options given below:

<table>
<thead>
<tr>
<th>List I (Chemical reactions)</th>
<th>List II (Type of chemical reaction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Formation of NH₃ from N₂ and H₂</td>
<td>I Decomposition</td>
</tr>
<tr>
<td>B Calcination of ZnCO₃</td>
<td>II Double displacement</td>
</tr>
<tr>
<td>C Reaction of aqueous BaCl₂ solution with dilute H₂SO₄</td>
<td>III Combination</td>
</tr>
<tr>
<td>D Rancidity of oils</td>
<td>IV Redox</td>
</tr>
</tbody>
</table>

84. You are provided with aqueous solutions of three salts – A, B and C, 2-3 drops of blue litmus solution, red litmus solution, and phenolphthalein were added to each of these solution in separate experiments. The change in colours of different indicators were recorded in the following table:

<table>
<thead>
<tr>
<th>Sample</th>
<th>With Blue Litmus Solution</th>
<th>With Red Litmus Solution</th>
<th>With Phenolphthalein Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>No Change</td>
<td>No Change</td>
<td>No Change</td>
</tr>
<tr>
<td>B</td>
<td>Turns Red</td>
<td>No Change</td>
<td>No Change</td>
</tr>
<tr>
<td>C</td>
<td>No Change</td>
<td>Turns blue</td>
<td>Turns pink</td>
</tr>
</tbody>
</table>

On the basis of above observations, identify A, B, and C from the following options:

(1) A = NH₄Cl, B = NaCl, C = CH₃COONa
(2) A = NH₄Cl, B = CH₃COONa, C = NaCl
(3) A = NaCl, B = NH₄Cl, C = CH₃COONa
(4) A = CH₃COONa, B = NH₄Cl, C = NaCl

Ans (3)

A = NaCl → no change with red and blue litmus paper and phenolphthalein
B = NH₄Cl → turns blue litmus red due to acidic nature
C = CH₃COONa → turns red litmus blue and phenolphthalein solution pink due to basic nature

85. Match List I (Mixture to be Separated) with the List II (Method Used) and select the correct answer using the options given below.

<table>
<thead>
<tr>
<th>List I (Mixture to be separated)</th>
<th>List II (Method used)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Liquid N₂ and liquid O₂</td>
<td>I Chromatography</td>
</tr>
<tr>
<td>B Red and blue pink</td>
<td>II Sublimation</td>
</tr>
<tr>
<td>C Solution of NaCl in water</td>
<td>III Fractional distillation</td>
</tr>
<tr>
<td>D Naphthalene and NaCl</td>
<td>IV Evaporation</td>
</tr>
</tbody>
</table>

(1) A – I, B – II, C – IV, D – V
(2) A – III, B – V, C – II, D – IV
(3) A – III, B – I, C – IV, D – II
(4) A – III, B – IV, C – I, D – II

Ans (3)

<table>
<thead>
<tr>
<th>List I (Mixture to be separated)</th>
<th>List II (Method used)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Liquid N₂ and liquid O₂</td>
<td>III Fractional distillation</td>
</tr>
<tr>
<td>B Red and blue pink</td>
<td>I Chromatography</td>
</tr>
<tr>
<td>C Solution of NaCl in water</td>
<td>IV Evaporation</td>
</tr>
<tr>
<td>D Naphthalene and NaCl</td>
<td>II Sublimation</td>
</tr>
</tbody>
</table>
86. Select the correct set of statements regarding change in properties, as we move down the second group in periodic table.
 I. Atomic size increases,
 II. Electro negativity increases.
 III. Tendency to loose electrons increases.
 IV. Valency remains same.
 (1) I, II and III (2) II, III and IV (3) I, II and IV (4) I, III and IV
 Ans (4)
 As we move down the group, atomic size increases, tendency to lose electrons increases but valency remains the same. Electronegativity decreases down the group.

87. Which of the following options containing formula, bonding and nature of aqueous solution (in the same order) is correct for the compound formed by two elements A and B having atomic numbers 1 and 17, respectively?
 (1) AB, Ionic, Acidic (2) AB₂, Ionic, Basic
 (3) AB, Covalent, Acidic (4) AB₂, Covalent, Neutral
 Ans (3)
 Element ‘A’ → atomic number – 1
 Element ‘B’ → atomic number 17
 Valency of both A and B = 1 i.e., AB
 The elements are H and Cl and formation of HCl i.e., AB takes place (through covalent bonding) and it is acidic in nature.

88. Choose one of the following alternative statements given below which correctly explains the process of osmosis.
 (1) Movement of water from regions of concentrated to dilute solutions.
 (2) The passage of solute from weak solution to strong solution through a selectively-permeable membrane.
 (3) A passive transport of a solvent through a selectively-permeable membrane from a region of low solute concentration to a region of high solute concentration.
 (4) An energy-dependent transport of a solvent through a selectively-permeable membrane from a region of low solute concentration to a region of high solute concentration.
 Ans (3)
 Osmosis is the process of movement of solvent molecules from their region of high concentration to their region of low concentration through a semi-permeable membrane.

89. In meiosis, each of the four daughter cells has one set of chromosomes. Due to randomness of process of chromosome separation in meiosis, large number of chromosome combinations can form gametes. How many such chromosome combinations in the gametes are possible in case of humans, assuming there is no crossing-over taking place?
 (1) 2²² (2) 2²³ (3) 2⁴⁶ (4) 2³⁴
 Ans (2)
 \[\text{(Male gamete)} \times \text{(Female gamete)} = \text{(Zygote)} \]
90. Sclerenchyma in plants is an example of simple permanent tissue comprising of two types of cells, sclereids and fibres. Why these cells are functionally important to the plants even after they die?

Choose the correct alternative from the options given below.

1. Both are thin walled cells lacking intercellular spaces.
2. Walls in both the types of cells are thick and cutinized.
3. Walls in both the cell types are thick and usually lignified.
4. Both the cells are used for conducting solutes and providing strength to the plant.

Ans (3)

Sclerenchyma is the simple permanent tissue comprising of sclereids and fibres. Walls in both sclereids and fibres are thick and lignified.

91. Which one of the following organisms has a cellular respiratory pigment dissolved in plasma and is also a predaceous carnivore and shows matriphagy?

1. Scorpion
2. Cockroach
3. Earthworm
4. Sea cucumber

Ans (1)

Scorpion is a predaceous carnivore belonging to phylum Arthropoda which has haemocyanin, cellular respiratory pigment, dissolved in plasma.

Matriphagy is the consumption of the mother by her offspring. This behaviour is also observed in scorpion but not in cockroach.

92. Lichens are sensitive to certain air pollutants and are often replaced by other plants. From the given options choose the best combination of sensitivity and replacement of lichens.

1. Sulphur dioxide and moss
2. Sulphur dioxide and algae
3. Carbon dioxide and ferns
4. Sulphur dioxide and grass

Ans (2)

Lichens are sensitive to sulphur dioxide which is one of the air pollutants. SO₂ affects the phycobiont, the algal component of lichen, and impedes photosynthesis.

93. A student was performing an experiment to understand the enzyme-substrate reaction. The student measured the formation of coloured product using a calorimeter. The student plotted the graph below which shows the reaction rate versus the substrate concentration.

Following interpretations were drawn by the student:

(A) The higher concentration of substrate acts as an enzyme inhibitor
(B) It is a sigmoidal curve with sharp transition from low to high reaction rates over the increasing substrate concentration.
(C) The curve reaches a plateau and does not further increase with increasing substrate concentrations due to saturation of enzyme with the substrate.

Choose which of the interpretations of the graph are correct.

1. A and B
2. A and C
3. B only
4. B and C

Ans (B)

The student plotted the graph below which shows the reaction rate versus the substrate concentration.
Ans (2)
The enzyme substrate reaction are controlled or facilitated by conditions like temperature, concentration of substrates etc. Higher the concentration of substrate, the enzyme acts as an inhibitor rather than a catalyst. As the concentration of the substrate has reached its saturation, it shows a plateau in the graph.

94. Glucose is the prime source of energy in our body. However, it is stored in the form of glycogen in the muscle and liver of animals and in the form of starch in plants. As a result, every time a cell requires glucose, it must hydrolyze glycogen which is an energy consuming process. Why does the cell store glycogen instead of glucose in free form?
(1) Glycogen is more compact and more hydrophilic.
(2) Storage of glucose in free form will consume more ATP.
(3) Glucose in the free form creates more osmotic pressure.
(4) Glucose is highly reactive molecule hence storing in the free form can result in unwanted reactions in the cells.

Ans (3)
Glycogen is insoluble thus, storing will not disturb the osmotic equilibrium rather than glucose which is soluble in water. If glucose is stored, it will disturb the osmotic pressure (hypertonic) that will cause the cell to lyse.

95. The figure given below is designed to show yeast respiration. In one of the tubes, there is yeast suspension, in glucose solution. This solution was boiled before yeast was added to it. Which one of the following is the possible reason for boiling of sugar solution?

(1) To ensure aerobic fermentation.
(2) To provide the initial warmth for the yeast to become active.
(3) To remove the dissolved oxygen and carbon dioxide from the solution.
(4) To remove dissolved carbon dioxide and trap the oxygen from the atmosphere.

Ans (3)
Glucose solution is boiled to sterilize it and to remove any oxygen present. This provides an anaerobic condition for the fermentation to occur.
96. A squirrel was eating a fruit on the ground. Suddenly it was attacked by a dog. The squirrel rushed to the tree immediately and saved itself from the dangerous attack. What immediate changes are most likely to have taken place in the body of the squirrel?
A. Blood flows to the stomach for rapid digestion.
B. Adrenalin was secreted in the blood by the adrenal glands.
C. Heart beat becomes faster and pumps more blood so that muscles get more oxygen.
D. Adrenocorticotropic hormone is secreted in the blood and blood flows more towards the vital organs.
Select the correct combination of options given below:
(1) A and B (2) A and C (3) B and C (4) C and D
Ans (3)
Adrenalin is the emergency hormone produced by the adrenal medulla of the adrenal glands. It helps to regulate most of the important functions such as heart rate, blood pressure and breathing.

97. Stimulus from the environment is detected by the nerve cells. The stimulus acquired is transmitted in the form of electrical impulse. From the options given below choose the correct scheme showing the direction in which the nerve impulse travels. (Arrows shows the direction of impulse flow).

(1) (2)
(3) (4)
Ans (3)
The stimulus acquired is transmitted in the form of electrical impulses from the dendrite of the neuron towards the axon terminal. From the axon terminal of one neuron, the impulses are transmitted in the form of chemical signals to the dendrites of the other neuron.

98. Double fertilization is a complex mechanism of flowering plants that is also unique to angiosperms. Choose the most appropriate statement from the options listed below that explains this phenomenon.
(1) Fertilization in two flowers of the same plant forming endosperms.
(2) Two male gametes fertilize two eggs inside the ovule as a result the ovary gives rise to bigger fruits.
(3) Two fertilizations occur in a flower—one fertilization results in the formation of a diploid zygote and the second fertilization results in the formation of a triploid endosperm.
(4) Two pollen grains sending two pollen tubes inside the ovary, resulting in the formation of two seeds inside the fruit.
Ans (3)
Double fertilization is the complex fertilization mechanism in flowering plants. A pollen tube releases two male gametes into an unfertilized ovule. One male gamete (n) fuses with the egg (n) to produce a zygote (2n) and the other male gamete (n) fuses with the secondary nucleus (2n) to form the triploid endosperm (3n).
99. It is generally observed that malaria is rampant in areas where construction work and/or stagnant water are usually seen. Plasmodium species are known to cause malaria. The parasite when injected by the mosquito into the human blood stream goes through specific life cycle stages. Select from below the correct sequence of stages.

1. Mosquito (sporozoites) → human liver (merozoites) → human RBC (gametes) → mosquito (zygote–oocyst–sporozoites)
3. Mosquito (merozoites) → human liver (sporozoites) → human RBC (gametes) → mosquito (oocyst–zygote → sporozoites)
4. Mosquito (sporozoites) → human liver (sporozoites) → human RBC (merozoites) → mosquito (zygote–oocyst–sporozoites)

Ans (1)
100. A plant with red coloured flowers is crossed with a plant having white flowers. The red and white colour of the flower is controlled by a single gene. Red is dominant over white. The F1 progeny is self-pollinated and the flower colour in F2 is observed.

Given the above information, what is the expected phenotypic ratio of plants with different flower colours?

(1) All-plants with red flowers.
(2) Red: white in the ratio of 3:1.
(3) Pink : white in the ratio of 3 : 1.

Ans (2)

Mendel’s law of Dominance states that recessive alleles will always be masked by dominant alleles. In this case, red colour of the flower is dominant over the white colour of the flower. This is an example of Monohybrid cross. Hence, the phenotypic ratio is 3 : 1.